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Abstract

A variety of problems in operations research, control theory, computer science, etc, can
be modelled as discrete event systems with maximum and minimum constraints. When
these systems require only maximum constraints (or, dually, only minimum constraints)
they can be studied by linear methods based on max-plus algebra. Systems with mixed
constraints, however, are non-linear from this perspective and relatively little is known
about their behaviour. The paper lays the foundations of the theory of discrete event
systems with mixed constraints. We introduce min-max functions, F' : R™ — R", which
are constructed using finitely many operations of min, max and +, and study them as
dynamical systems. Among other results, we give a complete account of the periodic
behaviour of functions of dimension 2; we introduce and characterize the concept of balance
which generalizes irreducibility in the linear theory; and we give a formula for the cycle time
(eigenvalue) of a min-max function which generalizes the maximum cycle mean formula.
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1 Introduction

A variety of problems arising in operations research, control theory, computer science, etc, can
be modelled in terms of the evolution of a discrete event system. A variety of mathematical
techniques have been developed to deal with the dynamics of such systems, [Ho89]. In this pa-
per we study systems whose evolution can be specified by maximum and minimum constraints
and we develop new methods for analysing them.

The study of discrete event systems with only maximum constraints (or, dually, only mini-
mum constraints) has a long and complicated history. Researchers from different fields have
approached the same underlying mathematics from widely differing viewpoints, usually in com-
plete ignorance of each other’s work. A detailed account of the historical development would
tax the resources of a professional historian. We content ourselves with a sketch of the main
strands of work and some pointers to the main sources in the literature.

From the computer science viewpoint, the basic problem can be formulated as follows. Consider
a finite directed graph, G, whose edges are annotated with real numbers. The vertices of G
represent events which can occur repeatedly while the numbers on the edges represent delays.
(Negative delays are mathematically feasible although the specific application may rule them
out.) Suppose that the vertices are a',a?,---,a™. If there is an edge from a® to a! which is
annotated with r—which we denote a?> - a'—then each occurrence of a! is constrained to
wait until 7 time units after the previous occurrence of a2. The time of the s-th occurrence of

a' is hence given by a maximum constraint over all the edges which enter a':
t(a;) = max {t(aj_;) +7 | a* 5 a'}. (1)

(This is a least fixed point semantics in an appropriate sense; see [Gun93b, Proposition 3.1] for
more details.) To start the system off, it is necessary to assume a vector of initial time values,
7 = (vi,---,vp), so that t(a}) = v; for each vertex a’. These are similar to the boundary
conditions in a difference or differential equation. We shall use a subscript ¢z to indicate the
dependence of the time evolution on the initial conditions. Many authors start the system off
at (0,---,0) and do not concern themselves with behaviour under other initial conditions; in
this case we shall simply write . The following basic result about max-only systems has been

proved repeatedly (see, among others, [Rei68, §3A], [RH80, Theorem 2], [Bur90, Theorem 2.8]):

Theorem 1.1 If G is strongly connected then the limit

lim @ (2)

s—oo §

exists, is independent of the vertez a', and is equal to the mazimum cycle mean of the graph.

A cycle mean is simply the sum of the annotations on a directed cycle, divided by the number
of edges in the cycle. The maximum such number over all cycles in the graph (it is sufficient
to consider elementary cycles in which no vertex is repeated) is called the maximum cycle
mean. Karp has given an elegant formula for computing this, [Kar78], whose time complexity
is O(n.e) where n is the number of vertices and e the number of edges in the graph.



The limit (2) can be interpreted as the asymptotic average time to the next occurrence of the
event a’. After s occurrences, the average time to the next occurrence is given by:
t(ah) — t(af) + -+~ + t(ay) —t(af 1) _ t(al) —t(a})

s—1 s—1 ’

which tends to (2) as s — co. It is reasonable, therefore, to refer to the limit in question as
the cycle time of the event a*. The reciprocal of the cycle time is a measure of the rate of
occurrence of a’ (number of occurrences per unit time).

This strand in the history of the subject is characterized by a concentration on asymptotic
averages. Since the equations (1), which govern the evolution of the system, are entirely
deterministic, we might well ask for more information about the exact time behaviour of the
system. Does t(al)/s jitter for ever around its asymptotic value, or does it eventually settle
down into some periodic pattern? We might also like to know what happens if the system is
started from somewhere other than (0,---,0). Does this make a difference to the cycle time?
Does it make a difference to whether or not the system reaches a periodic regime? The study of
the exact behaviour of max-only systems forms a parallel, or, perhaps, slowly converging strand
in the historical record. It begins with the following observation: the non-linear equation (1)
can be regarded as a linear equation over a new “max-plus” algebra R U {—occ} in which ‘+”
is defined as maximum and “x” as addition. Let A denote the n x n matrix in which 4;; =r
if there is an edge from a’ to a' annotated with 7 and A;; = —oo if there is no edge from a’ to
a'. In max-plus algebra, the evolution of the system can be described by means of the vector
equation:
(tlaly), - to(al )T = 457 (s 20),

(where vectors are written as row vectors). In other words, the evolution is captured by a
transformation: A : (RU{—o0})” — (R U{—00})", which can be regarded as linear in max-
plus algebra. This beautiful idea opens the way to an algebraic treatment of the dynamics of
max-only systems. There is a close relationship between this matrix representation and the
graph representation discussed earlier. The graph G is the so-called precedence graph of the
matrix A and G is strongly connected if, and only if, A is irreducible, in the usual sense of
matrix theory. In this case the cycle time (2) can be identified as an eigenvalue of A, which
turns out to also be the spectral radius of A, [BCOQ92, Theorem 3.23].

As Cuninghame-Green points out, [CG79, §1.1], the discovery of max-plus algebra was made
independently by several people: see the references cited in [CG79, §29] for more information.
It would be appropriate, however, to cite Cuninghame-Green'’s early papers (see [CG62] and
references therein) as the starting point for this strand of the subject. They contain a clear
realisation, [CG62, §4], of the emergence of a new area of research: linear algebra over max-plus.
Cuninghame-Green’s work originated from problems in operations research.

The max-plus algebra, R U {—o0}, is but one example of a dioid (sometimes, dioid) or idem-
potent semiring. That is, a semiring in which the addition is idempotent: in R U {—oc},
max{a,a} = a. Much of the linear theory can be carried out for a general dioid although
additional axioms are necessary for certain aspects. The idempotency requirement introduces
a semi-lattice structure on the ring and it is the interplay between order and algebra which
gives the theory much of its character. Systematic treatments have been given by Cuninghame-
Green, see [CG79] and the more recent survey article, [CG91]; Gondran and Minoux, see the
survey article, [GM]; Cao, Kim and Roush, [CKR84], who deal with dioids in which the incline
axiom, ab < a, holds; and Zimmermann, [Zim81].



The relevance of these ideas for discrete event systems was first recognised in performance
problems arising in flexible manufacturing systems, [CDQV85]. The Max-Plus group, together
with their co-workers and students, have gone on to solve many of the outstanding problems
in the deterministic theory and to systematically investigate the stochastic aspects. This has
culminated in their recent book, [BCOQ92]. The survey paper, [CMQV89], gives a snapshot
of the deterministic theory.

Independently of this, and starting from problems in mathematical physics, economics and
control theory, Maslov, Samborskii and others have made deep contributions to “idempotent
analysis”, [MS92]. This work stems from the observation of Maslov, [Mas87], that certain
non-linear differential equations that arise in mathematical physics and control theory, may be
solved by superposition—usually only possible for linear equations—provided the superposition
is done in an idempotent context. (Very much earlier, in 1967, Romanovskii had already shown
the existence of eigenvectors for endomorphisms of semimodules over idempotent semirings;
see the references in [MS92].) As the name “idempotent analysis” suggests, and in contrast
to most of the approaches discussed above, the Russian school have gone from linear algebra
to functional analysis. (Cao, Kim and Roush, [CKR84, §4.7] discuss Hilbert spaces over an
incline algebra.) It is in keeping with the traditions of the subject that the existence of the
Russian school was unknown to others working on similar problems (including the author of
the present paper) until very recently!. For instance, the relevant literature is not cited in
[BCOQI2|. The collection of papers in [MS92] provides an excellent and accessible survey of
the school’s work.

The work described above gives a great deal of insight into the exact behaviour of max-only
systems and provides a body of mathematical results applicable to a remarkably wide variety
of practical problems. However, systems with mixed constraints, maxima and minima, are
non-linear from this perspective and appear to be inaccessible to such methods. The final
strand in our historical sketch begins with the work of Olsder on the existence of eigenvectors
in certain mixed systems, [Ols91], [BCOQ92, §9.6]. These systems are of a restricted kind
but can be of arbitrarily high dimension. Somewhat later, motivated by problems in timing
analysis of digital circuits, [Gun93c], we gave the first proof of eventual periodicity in systems
with mixed constraints, [Gun93b]. Olsder has recently studied several questions related to
periodicity for the same class of systems which he considered earlier, [O1s93].

The present paper attempts to lay the foundations of the theory of discrete event systems with
mixed constraints?. Instead of considering linear functions, A : (R U {—cc})"* — (R U {—o00})"
over max-plus algebra, we introduce min-max functions ' : R™ — R" in which each component
F; : R® — R is built up in a specific way by using the operations of maximum, minimum and
addition (see Definition 2.1 for precise details). Min-max functions provide a simple and
convenient mathematical setting in which to describe systems with mixed constraints. Instead
of taking an algebraic approach we study the behaviour of F' as a dynamical system. That is,
we study the eventual behaviour of the sequence

7, F(7), FX(@), -,

Our approach leads to a different perspective on the behaviour of systems to the linear case.
As one might expect, generalization leads to a clarification of earlier results.

!We are deeply grateful to an anonymous reviewer for pointing it out to us.
2The present paper is an extended version of the technical report [Gun93a].



In the next section we give the basic definitions of conjunctive normal form, periodic point
and cycle time for an arbitrary min-max function. These definitions provide the main themes
for the rest of the paper. In §3 we prove the first of our main results, Theorem 3.3, which
gives a necessary and sufficient condition for the existence of eventual periodicity in dimension
2. As pointed out in [BCOQ92, page 457], “Such a property has not been shown ... though
simulations do point in this direction.”. In §4 we introduce the balance condition for min-max
functions in an attempt to identify a class of functions with good periodicity properties. We
characterize balance in dimension 2 (Proposition 4.1) and show that for max-plus matrices,
balance is a natural generalization of irreducibility (Theorem 4.1). Indeed, the main result
on the spectrum of an irreducible max-plus matrix, [BCOQ92, Theorem 3.23], holds verbatim
for balanced matrices (Proposition 4.2). This treatment sheds a new light on aspects of the
linear theory. In §5 we study the cycle time of a min-max function and derive a formula for
calculating it, Theorem 5.1. This generalizes the maximum cycle mean formula of [BCOQ92,
Theorem 3.23]. Applications are discussed elsewhere, [Gun93c]|.

It is a pleasure to thank David Dill for introducing us to the work of Burns, [Bur90], which
provided the initial motivation for this study, and for his continued interest in and encour-
agement of this work. Thanks are also due to Gerard Hoffman for pointing out the work of
the Max-Plus group and to Nieke Tholen for ferreting out several misprints and confusions.
We are also very grateful to various members of the Max-Plus group, and particularly to
Geert-Jan Olsder, for kindly keeping us informed of their most recent work. The comments of
three anonymous reviewers improved aspects of the presentation and clarified several obscu-
rities. Any indiscretions that remain must be laid at the author’s door. The work presented
here was undertaken as part of project STETSON, a joint project between Hewlett-Packard
Laboratories and Stanford University on asynchronous hardware design.

2 The basic definitions

We begin this section by introducing min-max expressions which are the components out of
which min-max functions are built. After discussing some necessary technicalities we introduce
min-max functions and give the definitions of periodic point and cycle time.

It will be convenient to use the infix operators a V b and a A b to stand for maximum (least
upper bound) and minimum (greatest lower bound) respectively: a Vb = max (a,b) and aAb =
min (a, b). It is easy to see that addition distributes over both maximum and minimum:

h+(aVvb)=h+aVh+b, h+(aAb)=h+aANh+b. (3)

In expressions like these we always assume that 4+ has higher binding than A or V.

Definition 2.1 A min-max expression, f, is a term in the grammar:

f::xlaw2a"' |f+a‘f/\f|fvf

where x1,x9,+++ are variables and a € R is referred to as a parameter.

The expressions x1 +5Axs —1 and (x1 +1Vx1+2)Axs +3.14159 are both min-max expressions.
However, neither (z1 + x2) A x3 + 2 nor x1 V 2 are legal terms in the min-max grammar. An



expression which uses only V and + is a max-only expression; dually, a min-only expression
uses only A and +.

A min-max expression of n variables, f(x1,---,x,), gives rise to a real-valued function, f :
R"™ — R, for which we use the same notation. Note that an expression of n variables does
not have to use each of the variables x1,---,z,: we may consider x1 + 2 as an expression of

n variables for any n > 1. We refer to n as the dimension of f and this number depends
on the context in which f is being used. In general, we are only concerned with f as a real-
valued function, f : R™ — R, and we shall freely use the associativity and commutativity
of A and V, as well as (3), to simplify expressions. If we wish to emphasize the specific
syntactic form of f (which is sometimes necessary) then we shall use f = g to indicate syntactic
identity of expressions. The notation f = g will always mean equality as real-valued functions:
f(Z) = g(Z) for all ¥ € R™. Hence, (z1 +1V 1 +2) Az + 3.14159 = 1 + 2. In like manner,
the notation f < g will mean that f(¥) < ¢(Z) for all £ € R". To avoid cluttering up the
notation we shall write fi V.-V f, for (fi V (faV (---(fn-1V fn)))) and similarly for A.

If f is a max-only expression of n variables, it is easy to see that it can be placed in the
following form:
f=(ar+z1 V- Va,+x,), (4)

where we now allow a; € R U {—o0}. A term of the form —oco+x; merely indicates the absence
of the variable x;. Since each min-max expression must have at least one variable in it, there
must exist a; # —oo. (When we write expressions such as (4) we shall sometimes leave out
the terms with a; = —00.) Suppose that ¢ is another max-only expression which has also been
placed in this form:

g = (b1+$1V---Vbn+xn),

Lemma 2.1 If f < g then a; <b; for 1 <i <n.

Proof: If a; = —oo then there is nothing to prove, so choose ¢ such that a; # —oc0. Fix
arbitrary values for each variable other than z;. By making x; sufficiently large, we can always
ensure that f = a; + x;- If b; = —oo then, for all sufficiently large x;, g will have a constant

value. Since f < g, by hypothesis, this is clearly impossible. Hence, b; # —oo. Furthermore,
for all sufficiently large z;,
a; +x; = f < g="0b; +x.

Hence a; < b;.
QED

It follows directly from Lemma 2.1 that if f = g, then a; = b; for 1 < i < n. Hence
f = g. In other words, the form (4) is unique for max-only expressions. We shall refer to
(4) as conjunctive form (or conjunctive normal form) for max-only expressions. The choice of
the word conjunctive comes by analogy with normal forms in propositional calculus, [Gal86,
Definition 3.4.7].

If f is a min-max expression, it can also be placed in conjunctive form:

f=FfNNA fm, (5)



where each f; is a max-only expression in conjunctive form. The form (5) is not unique. For
instance, 14+x1 = (14+xz1) A(2+x1). However, we can always remove redundant terms so that

i#j] = fi £fj (6)

One way to do this is to note that the terms f; form a partially ordered set under <. The
minimal elements of this poset give a conjunctive form for f and also satisfy (6). Note that
Lemma 2.1 provides a simple test for f; < f;.

Definition 2.2 If f is a min-maz expression of n variables then the expression (5) is a con-

Junctive normal form for f if each f; is a maz-only expression in conjunctive form and condition
(6) holds.

Theorem 2.1 Conjunctive normal form is unique up to re-ordering of the f;.

Proof: The proof of this is relegated to the Appendix, in order not to delay the exposition at
this point.

QED

There is a slight asymmetry between V and A in (5). The number of terms, a+ x;, in each max-
only expression, f;, is fixed and is equal to the dimension of f. We need to allow a = —o0 to
indicate the absence of the corresponding term. However, the number of max-only expressions,
m, is not fixed; if a max-only expression does not contribute to f, it is simply omitted. Hence
we have no need for the constant 4+o00. In the dual form, disjunctive form, which is similar to
(5) but with V and A interchanged, we would have a € R N {400} and we would no longer
require —oo.

Many definitions and results in this paper, such as Definition 2.2 and Theorem 2.1, have obvious
duals in which the roles of maximum and minimum are interchanged and the directions of
certain inequalities are reversed. Since —(a Ab) = —a V —b dual results do not require separate
proof. In the remainder of this paper we shall only state one version of these and will leave it
to the reader to formulate the duals.

There is a simple algorithm for moving back and forth between conjunctive and disjunctive
form which is useful in practice. We explain it here by working through an example. Consider
the min-max expression of 2 variables,

f=(a+z1Vb+z2) N+, (7)

where a,b,c € R. This is effectively in conjunctive form but to be more precise we should
write f as
(a+x1Vb+x2)A(c+ 21V —00+ 9).

To express f in disjunctive form we go back to the initial min-max expression (7) and rewrite
each individual term a; + z; in disjunctive form. This gives

((a+x1 A+oo+x2) V(+00o+ 21 Ab+ 22)) A(c+ 21 A 400 + 22).

We now use the distributivity of A over V to interchange the order of the two operations. This
gives
((anc)+z1 AN+oo+x2) V(c+x1 ANb+ x2), (8)



which is in disjunctive form. Be warned, however, that this algorithm does not take conjunctive
normal form to disjunctive normal form. For example,

(I+zVa+az) AN (2421 V3+32)
is in conjunctive normal form. If we apply the algorithm above, we get the disjunctive form
(I+zAdoo+m) V(I + 21 A3+ 22) V(2 + 21 Ad+T2) V (+00 + 21 A3+ T2)

which is certainly not normal—the second min-only expression is redundant. This example
should help clarify any confusion that may arise from the use of these forms.

Lemma 2.2 If f(x1,---,x,) 15 @ min-mazx expression and h € R then

f($1+h,$2+h,“‘,$n+h):f(.Tl,IQ,“‘,.Tn)—Fh.

Proof: If f = z; the result is immediate and if the result holds for f it certainly holds for
f + a. By (3), we see that the result holds for f; A fa or fi V fo if it holds for fi and fo
separately. The result follows by structural induction.

QED

This would not be true, of course, for either (z1 + z2) A x3 + 2 or x1 V 2. This illustrates a
significant aspect of the chosen syntax for min-max expressions. Note that if f(z1,---,x,) is
a min-max expression of dimension n and g1, -, ¢, are min-max expressions of dimension m
then f(g1,---,gn) is a min-max expression of dimension m.

Definition 2.3 A min-maz function of dimension n is any function, F : R" — R", each of
whose components, F; : R™ — R, is a min-maz expression of n variables x1,- -+, xy.

If F and G are min-max functions of dimension n, it is easy to see that F' composed with G
is also a min-max function of dimension n. Hence F* is a min-max function, for any k > 0.

Let é(h) = (h,---,h) denote the constant vector each of whose components is h; the dimen-
sion of the vector should be clear from the context. The following observation is a trivial
consequence of Lemma, 2.2.

Lemma 2.3 If F is a min-maz function of dimension n, then

F(Z + 1)) = F(&) + &h). 9)

The main concern of the theory of min-max functions is with the behaviour of a function as a
dynamical system: with the asymptotic properties of the sequence

'fa F(‘f)a F2((E)’

for different starting points £ € R". However, the classical definitions of fixed point, periodic
point, etc, [Dev89, Definition 3.2], are inappropriate in this context. It is unusual for a min-
max function to have a fixed point, F'(¥) = Z. Instead, it is more commonplace to find a point
Z for which there is some real number h such that F'(#) = £+ &h). This observation motivates
the following definitions. Let F' be a min-max function of dimension n.



Definition 2.4 & is a periodic point of F, of period k > 1, if, for some h € R, FF(&) =
Z+ c(h). The least k with this property is the prime period of Z. If k = 1 then ¥ is a fized
point of F.

Definition 2.5 F is eventually periodic (EP) at Z, with period (respectively, prime period) k,
if, for some 1 > 0, FY(Z) is a periodic point of F of period (respectively, prime period) k.

Suppose that F is eventually periodic at Z, so that F!™*(%) = F!(%) + &(h) for some [ > 0.
For s > [, we can use the Euclidean algorithm to write s — | = ik + es, where 0 < e; < k. By
repeated application of (9), we see that F*(&) = F!T¢ (%) + i,é(h) for all sufficiently large s.
Since i5/s — 1/k as s — o0, it follows that

Fs (%) h

I = &%),

Jim —=—=d(g)

In view of the discussion in the Introduction, the following definition is quite natural.

Definition 2.6 If F is eventually periodic ot &, as above, then the cycle time of F at %,
denoted by Xp(Z), is given by h/k.

It is important to note that the cycle time exists at a point only if the function is eventually
periodic at that point. The problem of how X p(Z) varies with the choice of Z will be addressed in
§5. For the moment, let us note that if F' is 1-dimensional then, by (5) or by (9), F(z) = z+F(0)
for all z. Hence, every point is a fixed point of F and Xg(x) = F(0). The cycle time is
independent of the choice of x.

With these preliminaries out of the way, we can embark on the proofs of the main results.

3 Periodicity in dimension 2

If F' is a min-max function of dimension n, (9) indicates that the effective dimension of F' may
be reduced by 1. There are many ways in which this reduction can be accomplished; we shall
concentrate on only one of them here. Let (—)* : R™ — R"~! denote the function which takes
(1, ,2n) to (£1 — Tp, -+, Tpu_1 — ). Define the auxiliary function H : R"~! — R"~! by
H(Z) = F(Z,0)* so that

H,'(.Tl, v ,CCn_l) = F,'(.Tl, e ,.Tn_l,O) — Fn(xl, e ,.Tn_l,O), (1 S 1 S n — 1).

H can be thought of as the restriction and projection of F' on the hyperplane x, = 0. Because
of (9), the behaviour of F' can be reconstructed from H up to a scaling factor.

Lemma 3.1 For all s > 0 and & € R", there exists h € R, such that F*(Z) = (H*(Z*),0) +
é(h).

Proof: Note first that for any 7 € R"™!, F(7,0) = (H(%),0) + &) where h = F,(,0). Now
proceed by induction. For s = 0, & = (£*,0) + ¢(x,). Assume the formula for s > 0 and apply
F to it.
FHY(E) = F(H(&),0)+&h) by (9)
= (H**}(#),0) + &h') by the first remark.

oo



QED

It follows from this that Z is a periodic point of F' of period k if, and only if, H*(Z*) = i,
so that #* is a periodic point of H in the usual sense of dynamical systems theory, [Dev89,
Definition 3.2]. Furthermore, F'(%) is a periodic point of F if, and only if, H(#*) is a periodic
point of H. The dynamical behaviours of F' and H are essentially the same and can be read
off from each other.

The auxiliary function takes on a particularly simple form in dimension 2: H(z) = Fi(x,0) —
Fy(z,0) (using z in place of z1). What can we say about such functions?

Definition 3.1 A function R — R is said to be piecewise nice if it is everywhere continuous
and its graph is composed of finitely many straight lines of slope +1, 0, or -1.

If p is piecewise nice, we can always find a finite set of intervals,
(_ooaul]a [ulvu2]7 Tty [un—lvun]a [un’+oo)7 (10)

such that, on any one of the intervals, either p(x) = 2+ a or p(z) = —x + a or p(z) = a, for
some a € R. We do not necessarily assume that the derivative of p is discontinuous at the
points u;, although we can always choose the intervals to satisfy that condition.

Lemma 3.2 If p,q are piecewise nice functions and a € R then £z, a, p+a, pAgq, pVq, —p
and p(q) (p composed with q) are all piecewise nice.

Proof: Exercise for the reader.

QED

Corollary 3.1 If F is a min-max function of dimension 2, then the auziliary function H is
plecewise nice.

Proof: By structural induction using Lemma 3.2, it is easy to see that Fy(xz,0) and Fy(x,0)
are piecewise nice functions whose graphs have no segments of slope -1. Hence, H is also
piecewise nice.

QED

There is a converse to this which we shall state without proof. It is not needed for the
development which follows and its proof is quite tedious. However, it does make clear that the
class of piecewise nice functions exhibits exactly the behaviours that we are interested in.

Theorem 3.1 Every piecewise nice function is the auziliary function of some min-mazx func-
tion of dimension 2.

The next result is one of the key contributions of this paper. Since the proof is a little involved,
we add a few preparatory comments so that the reader does not lose sight of the wood amidst
all the trees. Consider the piecewise nice function, p(z) = —x. Iterating p; at any point



r € R, immediately results in either a 2-period, (p1)?(x) = p1(x), or a fixed point, p1(z) = ,
in the usual sense. Now consider the function ps(x) = —Az, where 0 < A\ < 1. This function
behaves differently under iteration. It is easy to see that lim, . (p2)"(z) = 0 for any z € R
but ps takes infinitely long to reach its fixed point at 0. We shall show that when a piecewise
nice function, p, has a fixed point, its behaviour under iteration is qualitatively similar to
p1 and not to py. (By qualitative we mean simply that periodic behaviour is eventual and
not immediate.) We shall establish this by exhibiting a constant ¢ > 0 such that, if p is not
eventually periodic at = then, by iterating p sufficiently far, we can always continue, eventually,
to move in the same direction by at least 6. This quickly yields a contradiction when p has a
fixed point. The constant emerges from the finite structure of the graph of p. The fine print
in the proof is a series of trivial observations which establish that ¢ exists and has the right
properties. We hope these remarks will aid the reader in navigating through the proof. It may
help to have a piece of squared graph paper to hand while working through the details.

Theorem 3.2 Let p be a piecewise nice function. If p has a fized point, v = p(v), then, for
any x € R, there exists k > 0 such that, p*(z) = p*T2(x). Conversely, if, for some v € R, the
set {p*(v) | i > 0} is finite, then p has a fized point.

Proof: We first establish some conventions which will be used during the proof. We shall work
in the (z,y) plane where y = p(x) represents the graph of the piecewise nice function p. It will
be convenient to use the phrase “the point 2”7 as a shorthand for “the point (x,p(x)) on the
graph of p”. We shall often refer to “horizontal distance” meaning by that, distance measured
along the x axis. The horizontal distance between the point (¢, d) and the line y = z + a is
|c + a — d|. The horizontal distance between parallel lines, say y = —z + a and y = —z + b,
is the horizontal distance between any point on one line and the other line; in this case it
is given by |a — b|. When we speak of “left” or “right” we mean with respect to the usual
orientation of the x and y axes on the page: +x going to the right and +y going upwards.
If a is a point on the graph of p, the piecewise nice property implies that the graph must lie
within or on the boundaries marked out by lines of slope +1 and -1 through a. If it is known
that, say, the graph to the left of ¢ has no segment of slope +1, then the graph is further
restricted to lie in the area on or above the line y = p(a). These observation will be called
the “cone restrictions”. We shall refer to the line y = x as the main diagonal. There is a
simple and helpful geometric rule for finding the point p(a) (ie: (p(a), p?(a))) from the point
a (ie: (a,p(a))). Move horizontally from a until the main diagonal is reached and then move
vertically until the graph of p is reached. The point of intersection is the point p(a). We shall
call this trick “the reflection principle”.

We are now ready to embark on the first part of the proof. Divide the graph of p into three
regions, the left region, where p(xz) > z, the centre, where p(z) = z, and the right, where
p(xz) < x. The hypothesis of the theorem guarantees that the centre region is non-empty. If
both other regions are empty then every point is a fixed point and the result holds. Hence,
we may take it that either the left or the right region is non-empty. Without loss of generality
assume that the left region is non-empty.

The graph of p consists of line segments of slope +1, 0 and -1. Let §; denote the minimum
horizontal distance between a line segment of slope +1, which is not coincident with the main
diagonal, and the main diagonal itself. If no such line segments exist, then 6; = 0. Let 6
denote the minimum horizontal distance between any two line segments of slope -1. If none or
only one such exists then 63 = 0.
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Now suppose that the conclusion of the theorem does not hold. That is, assume that, for some
y € R, it never happens that pF(y) = p**2(y) We may assume that y is in the left region.
Then p(y) can either lie in the left or the right region. (It clearly cannot lie in the center, for
then the conclusion of the theorem would hold.)

Assume first that p(y) lies in the left region. We claim that, in this case, 61 > 0 and p(y)
moves to the right by at least §;. For suppose this is not the case. If § = 0 then it may be
that there are no line segments of slope +1. But then the cone restrictions imply that p(y)
must be either in the centre or in the right region. It could also happen that there is only
1 line segment of slope +1 and it coincides with the main diagonal. In this case, the cone
restrictions show once again that p(y) is either in the center region or in the right region. By
assumption, we can discount either of these possibilities. So we may take it that 6; > 0. Now
suppose that p(y) — y < 61. Then it must be the case that there are no line segments of slope
+1 strictly between the point y and the main diagonal, for otherwise, ¥ would be horizontally
distant by at least 6; from the main diagonal. But then, by the cone restrictions again, p(y)
must be either in the centre region or in the right region, which we can discount as before. We
conclude that, if y and p(y) are both in the left region, then

p(y) —y > 61> 0.

If the right region is empty then this inequality is all that we shall need to finish the argument.
So assume now that the right region is also non-empty. Note that we may apply a similar
argument to the one given above if y starts off in the right region. If y and p(y) are both in
the right region, then p(y) has moved to the left by at least 6;.

Now assume that p(y) lies in the right region. By the reflection principle, p(y) must lie on
the right hand boundary of the square whose top left corner is y and whose diagonal coincides
with the main diagonal. This is illustrated in the left hand picture of (11). If p?(y) also lies
in the right region, then, if p"(y) ever returns to the left region for some n > 2, it must have
moved to the right from y by at least §; > 0. This is because, by the argument in the previous
paragraph, each p’(y), for 2 < j < n, is in the right region and so keeps moving to the left
by at least 6;. Hence, when p™(y) returns to the left region, it cannot be closer than é; to the
right of y. (In fact, it cannot be closer than (n — 2).6; to the right but é; is adequate for our
purposes.) This is also illustrated in the left hand picture of (11).

p(y)

P2(y P (11)
p(y)

P*(y)

It may, however, be the case that p?(y) returns immediately to the left region. We can assume
that p%(y) # v, since this would satisfy the conclusion of the theorem. Suppose first that there
is at most one line segment of slope -1 between y and p(y). The cone restrictions make it clear
that then there must be at least one such line segment and that it must originate at or above y
and must terminate at or below p(y). The reflection principle then implies that p?(y) = p*(y).
The right hand picture of (11) illustrates this situation. By hypothesis, we may rule out this
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possibility. Hence, there are at least two lines of slope -1 between y and p(y). Hence, 83 > 0
and moreover, p?(y) has moved to the right with respect to y by at least 3. It follows that, if
p"(y) ever returns to the left region, then either

p"(y) —p(y) = 61 >0, or, p"(y) —p(y) = b2 > 0.
A similar argument applies if y is in the right region and p(y) moves into the left region.

We can now summarize what we have learned. If §; = 0, the points y, p(y), p*(y), - - - alternate
between the left and right regions. Furthermore, 63 # 0, for otherwise the points would quickly
fall into a double period. Hence, we can certainly pick an infinite subsequence a; such that all
the a; lie in the left region and

Qi1 — Q; > 69 > 0.

If 64 > 0 then some of the points may lie in the left region and some on the right. We can,
however, still pick an infinite subsequence, a;, lying entirely in one of the regions. Suppose,
without loss of generality, that this is the left region. If d3 is defined by

63:{61 if 6y = 0

min(é1,89) otherwise

then we can assert that
aiy1 —a; > 03 > 0.

So far we have not utilized the hypothesis that p has a fixed point. Let v be some fixed point.
The cone conditions imply that any point to the left of v is either in the centre or the left region
while any point to the right of v lies in the centre or in the right region. But, for sufficiently
large i, we can clearly find a point of our subsequence which lies to the right of v and must
hence be either in the centre or in the right region. But the subsequence was chosen to lie
entirely in the left region! This contradiction establishes the first part of the theorem.

For the second part of the theorem, we can take it that none of the p‘(v) are in the centre
region. If all the p’(v) are in one region, either the left or the right, then the analysis above
shows that 6; = 0. But then, as argued above, p(v) must be either in the centre or in the right
region. This contradiction shows that there must be points in both regions. By continuity,
there must be some v € R where p(v) = v.

QED

We hope the details of the above proof do not hide its essential simplicity. It is much easier
to convince oneself that the result is true than to write down a convincing proof. We can now
easily deduce our main theorem on periodic behaviour in min-max functions.

Theorem 3.3 Let F' be a min-max function of dimension 2. The following statements then
hold.

1. F is EP everywhere < F is EP somewhere < F has a fixed point.

2. Wherever F s EP, its prime period s at most 2.
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Proof: It is sufficient, by what was said above after Lemma 3.1, to establish the result for H
in place of F'. If H is EP everywhere, it is certainly EP somewhere. If H is EP somewhere then
the converse conditions of Theorem 3.2 are satisfied. Hence, H has a fixed point. Conversely,
suppose that H has a fixed point. By Theorem 3.2, H is EP everywhere. This proves the first
part.

For the second part, if H is EP then, by the first part, H has a fixed point. By Theorem 3.2,
H has prime period at most 2.

QED

Theorem 3.3 is the first demonstration of eventual periodicity for systems with mixed con-
straints. As was pointed out in [BCOQ92, page 457|, “Such a property has not been shown

. though stmulations do point in this direction.”. It is interesting to note the all-or-nothing
quality of periodic behaviour implied by Theorem 3.3: either the function is eventually periodic
everywhere or it is nowhere eventually periodic. Note also that if F' has a periodic point then
it must necessarily have a fixed point. There is evidence to suggest that a similar result holds
in higher dimensions, [BO93, Gun94a].

The second part of Theorem 3.3 suggests a connection between the maximum prime period
and the dimension of F. This cannot be so simple in general. For instance, we can always
construct a max-only function of dimension n which implements any permutation of the n
variables. The prime period of this function, at most points in R", is equal to the order of
the permutation in the symmetric group on n letters. Of course there are many permutations
whose order is greater than n: the permutation with cycle shape (123)(45) has order 6. Hence
dimension 2 is a special case. We should also note that, in view of Sarkovskii’s celebrated
result on the dynamics of a continuous function, [Dev89, Theorems 10.1 and 10.2], it should
come as no surprise that the prime period in dimension 2 is at most 2.

When does F' have a fixed point? For high dimensional functions this is a difficult open problem
but the methods of this section enable us to give a complete answer in dimension 2. First we
need some extra terminology.

e If p is a piecewise nice function then the rightmost (respectively, leftmost) segment of p
is that part of the graph of p which corresponds to the interval [u,,+00) (respectively,
(=00, u1]) in (10).

If S € RU{—o0} is a finite subset then, as usual, A,cga denotes the minimum element of S.
Note that if —oo € S then A\,cga = —oco. If S = () then, by convention, A,cga = +00; the
intuition being that as S gets smaller, A g a gets larger. For similar reasons, \/,cg = —00 if
S=0.

Now suppose that F' is a min-max function of dimension 2 and each component of F' is in
conjunctive form:

Fl(.%‘l,xg) = (a11 +x1Vag+ 1‘2) ARERWAN (anl + 21 Vap + .’L‘Q)
Fg(xl,xg) = (b11 +x1 Vbig + .Tz) Ao A (bml + 21V by + .TQ).

Proposition 3.1 F has a fized point if, and only if, the following two conditions hold:
N ax < N\ b,

1<i<n bj1j=—o00
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A b2 < A\ aa

1<i<m aj2=—00

Proof: As before, it is sufficient to deal with H instead of F'. Consider the rightmost segment
of H. Tt follows from the cone restrictions used in the proof of Theorem 3.2 that one way for
H to fail to have a fixed point is if this segment looks like the graph of y = £ 4 a where a > 0.
The only way for this to happen is if the corresponding rightmost segments of Fj(z,0) and
Fy(x,0) look like y = 2 + u and y = v, respectively, and u > v. By considering

Fi(z,0) = (a1 +xVa)A-Alapr +Van),
FQ(LE,O) = (b11+$Vb12)/\"'/\(bm1+$\/bm2)

and letting = become large, it is easy to see that this implies v = Aj;c, an # —00, v =

Nb;=— o0 biz # +oc and
N aa> N\ b (12)

1<i<n bjy=—00

Conversely, if this inequality holds then both sides of it must be finite. For if not then the
left side could only be —oo or the right side +oco. In neither case can (12) hold. Hence the
rightmost segment of H will have the required form. It follows that (12) is a necessary and
sufficient condition for this form of fixed point failure

The only other way for H to fail to have a fixed point is if its leftmost segment looks like =+ a
where a < 0. A similar analysis shows that this can happen if, and only if,

/\ by > /\ @;i1-
1<i<m a;o=—00

Hence H, and therefore also F', has a fixed point if, and only if, the two conditions in the
statement of the proposition hold.

QED

As an example of this, consider the following min-max function, which is of the form considered
by Olsder in [Ols91, Ols93]:

Fi(x1,22) = a+x1Vb+ o (13)
Fy(x1,22) = c+x1 Ad+ zo.

Here we assume that a,b, c,d € R which is the only interesting case. To apply Proposition 3.1
we need to convert F5 to conjunctive form using the algorithm discussed in §2:

Fy(z1,29) = (c+ 21V —00 + x9) A (=00 + 21 V d + x9).

The first condition of proposition 3.1 reduces to a < d while the second condition becomes
—00 < 400 which we may ignore. Hence the min-max function (13) has a fixed point if, and
only if, @ < d. This is Theorem 2.1 of [Ols91] restricted to functions of dimension 2. We shall
return to examples like this in §5.
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4 The balance condition

In example (13) it is clear that if we change the values of the parameters a, b, ¢ and d,
then the fixed point behaviour of F' will sometimes change. However, the methods of the
previous section also reveal the existence of a class of 2 dimensional functions whose fixed
point behaviour is invariant under change of parameters (see Proposition 4.1 below). This is
an attractive property and in this section we shall explore it further.

First we need to clarify what we mean by “change the values of the parameters”. The param-
eters are part of the definition of F'; if they change, then so does F'. To contemplate changing
the values of the parameters while keeping to the same function is an abuse of terminology.
However, it is a very convenient abuse which should not mislead the reader. It could be for-
malized and, in fact, we shall do so for max-plus matrices in Definition 4.3 below. But the
price in syntax is high for a general min-max function and the reader would surely not thank
us for it. We should note, however, that parameters are always real numbers; although we may
sometimes use —oo and +0o when writing expressions in conjunctive or disjunctive form, we
never allow an infinite value to be changed to a finite value or vice versa. That would “really”
change the function!

Definition 4.1 Let F be a min-maz function of arbitrary dimension. F is balanced if F has
a fized point for all values of its parameters.

We shall show in this section that we can characterize the balance property in two cases of
interest: functions of dimension 2 and max-only functions. We begin with the former.

Definition 4.2 The characteristic of a piecewise nice function p, denoted char(p), is a pair,
[u,v], where u,v € {4+1,0,—1} are the slope of the rightmost segment of p and the slope of the
leftmost segment of p, respectively. If F is min-max function of dimension 2, its characteristic
is that of its auxiliary function.

We shall sometimes write char(p) = [chary(p),char_(p)]. Note that the characteristic of
p(z) = xis [+1,+1] while that of p(z) = —z is [-1, —1]. It is easy to compute the characteristic;
the following Lemmas give the details. The values which appear in the characteristic are treated
as numbers to which the usual operations, including A and V, can be applied.

Lemma 4.1 With the same assumptions as in Lemma 3.2, let char(p) = [p+,p-], char(q) =
[94,q-]- Then,

char(xx) = [£1,#£1]
char(a) = 10,0]
char(p+a) = char(p)
char(pVq) = [p+Vas,p-Ng-]
char(pAgq) = [p+ Ags,p- V-]
char(=p) = [-p+,—p-]
char(p(—z)) = [-p-,—p4]
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Proof: Another exercise for the reader.
QED

Lemma 4.2 If F is a min-maz function of dimension 2 then chary(F) = chary(Fi(x,0)) —
chary (Fy(x,0)). Furthermore, char(F') is independent of the values of the parameters in F.

Proof: The first part is obvious. The second part follows from the third formula in Lemma 4.1.
QED

The significance of the characteristic is revealed in the following proposition.

Proposition 4.1 Let F' be a min-maz function of dimension 2. F is balanced if, and only if,
chary (F) < +1 and char_(F) < +1.

Proof: Let H be the auxiliary function of F' and suppose that the condition holds. Since
char;(H) < +1, the main diagonal, which has slope +1, must be above the graph of H
for sufficiently large positive values of z. In other words, there must be a point for which
H(xz)—x < 0. Similarly, since char_(H) < +1, there must be a point for which H(z) —x > 0.
Since H is continuous, it must have a fixed point. Hence so does F'. Since the characteristic is
independent of the values of the parameters, F' is balanced.

Now suppose that chary (F) = +1. For large positive values of x, the graph of H must coincide
with the line x 4+ u for some u € R . If uw > 0, it is easy to see, as in Proposition 3.1, that H
does not have a fixed point. So suppose that u < 0. Let v = —2u, which is positive. Express F}
in conjunctive form, as in (5), and add v to all the parameters which appear in this expression
for F;. Keep Fy the same as it was. It is easy to see, using (3), that the new function is
(Fy(x1,22) + v, Fo(x1,22)). Hence, although the characteristic of F' has not changed, its new
auxiliary function behaves like z — u for large x. As pointed out above, this new H cannot
have a fixed point. It follows that, for some choice of parameters, F' does not have a fixed
point and hence is not balanced. A similar argument works if char_(F) = +1.

QED

We could also obtain a characterization of balance using Proposition 3.1. However, char(F)
contains the essential information on the balance property and is much more convenient to
use in practice. For one thing, it does not require F' to be expressed in conjunctive form. We
recommend, when confronted with a 2 dimensional function whose fixed point behaviour is in
question, to first calculate char(F') and then fall back on Proposition 3.1 if F' turns out to be
unbalanced.

The geometric methods used above enable one to deduce much useful information about a 2
dimensional function. However, these methods do not extend to higher dimensions: there is
no obvious analogue of piecewise nice functions in dimensions greater than 2. More precisely,
there is no similar class of functions for which Theorem 3.1 is known to hold. In the remainder
of this paper we shall be concerned with functions of any dimension and the reader will observe
that the methods used are quite different and rely more heavily on the established techniques
of max-plus algebra.

We now turn our attention to max-only functions. In the rest of this section we shall determine
the conditions under which they are balanced. We begin with some notation, then state some
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lemmas about eigenvalues and eigenvectors and finally prove the main result. We conclude
with a comparison between balance and irreducibility.

In what follows, we shall use both standard algebra and max-plus algebra. We shall adhere
to the following rules in order not to confuse the reader. The operator + will always have
its standard meaning and V and A will always mean maximum and minimum respectively.
The following operations with vectors and matrices will be interpreted in terms of max-plus
algebra: A¢7, #4", hil and hA.

We shall need various notations and terminology from max-plus algebra. Most of the definitions
given below can be found in [BCOQ92, §2.3], which should be consulted for more details.

e The precedence graph of A, denoted G(A), is the annotated directed graph on the vertices
{1,.--,n}, where there is an edge from j to i if, and only if, A;; # —oo. This will be
denoted by j — 7. The annotation on the edge j — 4 is then A;;.

e Let (—)* and («)* denote the reflexive, transitive closures of the edge relations — and
—, respectively. The equivalence relation on the vertices of G(A) given by (—)* N («—)*
will be denoted R.

e The equivalence classes of vertices under R are the vertex sets of the maximal strongly
connected subgraphs (MSCSs) of G(A).

e An MSCS of G(A) is said to be non-trivial if it contains a circuit. The trivial MSCSs are
those with only a single vertex and no self-loop.

e The relation — on G(A) passes to the equivalence classes under R, where it is clearly
acyclic. Let p(A) denote the corresponding partial order on the set of MSCSs.

e A path in G(A) is a sequence of edges, i1 — ig — -+ — iy, from 41 t0 4,,. A circuit is a
path in which 41 = %,.

o The weight of a path p =iy — i3 — -+ — i, is the sum of the annotations on the path,
Iplw = Aiyi, +---+ A The length of a path is the number of edges in the path,
Iple =m — 1.

Z"rnim—l °

e The cycle mean of a circuit, g, is w(g) = |g|lw/|g|e-

For matrices, it is easy to formalise the idea of changing the values of parameters and we shall
borrow an idea from qualitative matrix theory, [Joh88], to do so.

Definition 4.3 Let A and B be maxz-plus matrices. A and B have the same pattern if A;; =
—00 if, and only if, B;j = —oo.

If A and B have the same pattern then G(A) and G(B) are isomorphic as directed graphs
(forgetting the annotations). It follows that p(A) and p(B) are isomorphic as partially ordered
sets.

If F' is a max-only function, then, as we saw in §2, each F; can be written in conjunctive normal
form:
Fi(#)=(Aan+x1V---VAp+z,) 1<i<n,
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where A;; € RU{—oco}. Let A denote the n X n matrix in max-plus algebra whose i, j-th
component is A;;. Then F(Z)T = A#T. By the remarks following Lemma 2.1, A is uniquely
associated to F. Not all matrices correspond to max-only functions in this way: they must
have the property that A;, # ¢(—o0) for each row i.

The matrix A operates on vectors in the space (R U {—o0})”. This results in an important
distinction between eigenvectors, for which AZ? = h#!, and fixed points of F, for which
F(#) = Z 4 &(h). Some (but not all) of the components of an eigenvector can be —co but the
components of a fixed point must all be real.

e A vector ¥ € (RU{—o0})" is real if ¥ € R".

It follows that there is a one-to-one correspondence between fixed points of F' and real eigenvec-
tors of A. We shall need to construct eigenvectors of A and we shall repeatedly use the following
technique. Let k be a vertex in G(A). Let A}, € RU{—00, 400} denote the maximum weight
among all paths from k& to ¢. If there are no paths from & to 7, then A?,'C = —oo. If there is no
maximum, then Aj,; = +00. Alternatively, we can simply define A;; = max { A, Afk, A?k, o
(compare [BCOQ92, (1.18)]). We shall say that the column vector AJ, “exists” if none of its
entries are +o0o. In this case (4], )7 is a genuine vector in max-plus algebra. The next result
is contained in Theorem 3.101 of [BCOQ92| and the proof is hence omitted.

Lemma 4.3 Let A be an n X n matriz in max-plus algebra. If A:k ezists and Azk =0, then
(AF)T is an eigenvector of A with eigenvalue 0.

It is worth noting that if A, = 0, then the vertex k must lie on a circuit in G(A) of weight 0.
Hence, when constructing eigenvectors by the technique of Lemma 4.3 it is only necessary to
consider those vertices which lie on circuits ¢ in G(A) with w(g) = 0.

We now need some observations about the eigenvalues of a max-plus matrix. In the general
case, when G(A) is not assumed to be strongly connected, the subject has been carefully studied
by Stéphane Gaubert in his thesis, [Gau92|. Since these results are not yet generally available
we have given an elementary proof of the aspects which are needed here, with references to
the more complete results in [Gau92].

e ([Gau92, Chapter IV, Definition 1.3.4]) If ¥ € (RU{—oc0})" then the support of ¥ is
sup(¥) = {i € N | v; # —o0}.

If A is some n X n matrix, we can regard sup(?¥) as a subset of the vertices of G(A). Any subset
of vertices, S, can always be regarded as a subgraph by restriction of the edge relation in the
obvious way.

e If p is a path in G(A) and S is a subgraph of G(A), then p lies entirely in S, denoted
p C S, if pis a subgraph of S.

Lemma 4.4 Let A be a square matriz in maz-plus algebra and suppose that AT = \iT. The
following statements hold.
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1. If i € sup(¥) then there exists a circuit, g, with w(g) = A and a path, p, from that circuit
to i, such that p,g C sup(?).

2. If g C sup(?) is a circuit, then w(g) < A.

Proof: For the first part, suppose that v; # —oco. Since A+ v; = A; @, there must be an edge
j — i of G(A) such that v; # —oo and

A+ v = Ayj +vj. (14)

Repeating this argument for j we can construct a path of arbitrary length leading to ¢ lying
entirely in sup(¥). Since there are only finitely many vertices, the path must contain a circuit,
g- By applying equation (14) to each vertex of this circuit and then adding the results, it is
easy to see that w(g) = A. This proves the first part.

For the second part, suppose that ¢ = iy — -+ — 4,, — 41 is a circuit such that g C sup(7).
For each 1 < ¢ < m, it must be the case that A + vit1 > A1) + v and, for @ = m,
A+v1 > Ay + v By adding these inequalities, we see that A > w(g). This proves the second
part.

QED

For more complete information about how the eigenvalues are distributed over the MSCSs
of G(A) see Proposition 2.2.1 and Theorem 2.2.4 of [Gau92, Chapter IV]. The next result is
not needed for the proof of the main theorem but it will be helpful later on. It is a trivial
consequence of Lemma 4.4.

Lemma 4.5 If A is a square matriz in maz-plus algebra and AvT = AT then,

A= \/{w(g) | g a circuit, g C sup(¥)}.

In particular, any two eigenvectors with the same support have the same eigenvalue.

For a more precise characterization, see [Gau92, Chapter IV, Corollary 2.2.5]. We can now
state the main result.

Theorem 4.1 Let A be a square matriz in maz-plus algebra. The following statements are
equivalent.

1. Any matriz with the same pattern as A has a real eigenvector.
2. G(A) has one and only one non-trivial MSCS and this is the least element of p(A).

3. G(A) has a circuit and every eigenvector of A is real.

Proof: We first prove the equivalence of parts 1 and 2. Assume that part 1 holds and that
G(A) does not satisfy part 2. Since A has an eigenvector, Lemma 4.4(1) implies that G(A) has
a circuit. It follows from the assumption that G(A) must have a non-trivial MSCS, S, which is
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not the least element of p(A). There is hence a vertex i such that there is no path in G(A) from
any vertex of S to ¢. So far we have not said anything about the values of the annotations on
the edges of G(A). We can certainly choose them so that maximum cycle mean of appears only
on a circuit in S. For instance, we can pick some circuit in S and set the annotations on the
edges in that circuit to 1, while setting all other annotations to 0. Let B be the matrix, having
the same pattern as A, which results from this construction and let v denote the maximum
cycle mean of G(B). According to part 1, B has a real eigenvector, ¥ such that B#T = \i”.
By Lemma 4.4(1), there exists a circuit, ¢, in G(B) with w(g) = A and, since ¥ is real, a path
from ¢ to the vertex i. It follows that g must lie in an MSCS different from S. Since v C S
was chosen as the circuit with maximum cycle mean, it must be that A < . But, v is the
cycle mean of a circuit lying entirely in sup(¥) = G(B), and so, by Lemma 4.4(2), A > ~. This
contradiction shows that part 1 implies part 2.

Now suppose part 2 holds. Let B be a matrix having the same pattern as A. We have to
show that B has an eigenvector. Let A be the maximum cycle mean of G(B) and consider the
matrix C' = A\~ !'B which is obtained from B by subtracting (in normal algebra) A from each
entry. Evidently, C' has the same pattern as B and A and it is clear that G(C) is obtained
from G(B) by subtracting A from each annotation. It follows that any circuit of G(C') has a
non-positive cycle mean and at least one circuit has cycle mean 0. Let k be a vertex on some
circuit of maximum cycle mean. By hypothesis, there is a path from % to any vertex of G(C).
Furthermore, since each circuit has non-positive weight, it is always possible to choose a path
of maximum weight, which does not contain any circuits, from k£ to any vertex. Hence, C:,'C
exists and each C;f € R. Furthermore, since k lies on a circuit of maximum cycle mean 0,
C’,;'}c = 0. It follows from Lemma 4.3 that (C’:;C)T is a real eigenvector of C' of eigenvalue 0.
Hence, (C;)T must be a real eigenvector of B of eigenvalue \. This shows that part 2 implies
part 1 and hence that parts 1 and 2 are equivalent.

We now show the equivalence of parts 2 and 3. Suppose that part 2 holds. Since G(A) has a
non-trivial MSCS, S, it must have a circuit. We need to show that every eigenvector of A is
real. Let ¥ be an eigenvector. By Lemma 4.4(1), there exists a circuit g C sup(¥). Clearly,
g C S. But, since S is the least element of p(A), there must be a path from any vertex in S to
any other vertex, j € G(A). Hence there is a path from a vertex in sup(%) to j. But then it is
easy to see that j € sup(?¥). Hence ¢ must be real, as required.

Finally, suppose that part 3 holds and part 2 does not. Since A has a circuit there must be a
non-trivial MSCS, S, of G(A) with the following two properties. Firstly, there is no non-trivial
MSCS which is greater than S in the partial order p(A). Secondly, there is a vertex i € G(A)
which cannot be reached by any path from S. Let A be the maximum cycle mean of all circuits
lying in S, let g be a circuit in S with cycle mean A and let k£ be a vertex lying on ¢g. Consider,
as before, B = A~'A, and use the same notation for the corresponding S, g and k in G(B).
Because of the choice of S, the only circuits on any path from k& must lie entirely in .S and must
hence have non-positive weight. It follows that B;'}c exists and B,;",C = 0. Hence, by Lemma 4.3,
7 = (B} )T is an eigenvector of B of eigenvalue 0. Since there is no path in G(B) from k to
i, v; = —oo. But, ¥ is also an eigenvector of A of eigenvalue A. Hence we have constructed
an eigenvector of A which is not real. This contradiction shows that part 3 implies part 2 and
hence that parts 2 and 3 are equivalent.

QED

Condition 2 of Theorem 4.1 is identical to the graph condition stated as part of property
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P3’ in [Ols91, page 189], although the reader will have to add the words “non-trivial” before
“strongly connected” in P3’ to bring it into line with the definitions given earlier. The equiva-

lence between conditions 2 and 3 is related to the structural characterization of eigenvalues in
Corollary 2.2.5 of [Gau92, Chapter IV].

We now want to compare the balance property with the irreducibility property which is widely
used in max-plus algebra. First, we need to compare like with like.

Definition 4.4 If A is a square matrixz in maz-plus algebra, then A is balanced if it satisfies
any of the equivalent conditions in Theorem 4.1.

If F' is max-only and A is the corresponding matrix in max-plus algebra, then F' is balanced
if, and only if, A is balanced.

Definition 4.5 If A is a square matriz in maz-plus algebra then p(A) = V{w(g) | g any circuit}
denotes the maximum cycle mean of A.

If A has no circuits then, following the convention introduced before Proposition 3.1, u(A) =
—o0. However, if A is the matrix corresponding to some max-only function then A;, # &(—o0).
It follows that A always has a circuit and hence p(A) # —oo. There is a simple formula for

u(A) when A has dimension 2 which we shall make use of in the next section. If
a b

w(A)=aVv (b+c)/2Vd. (15)

where a,b,c,d € RU{—00}, then

This quickly becomes less simple as the dimension increases!

It follows immediately from Lemma 4.5 that any real eigenvector must have u(A) for its
eigenvalue. For balanced matrices, this is the only eigenvalue, as the following result shows.

Proposition 4.2 Let A be a square matriz in maz-plus algebra. If A is balanced then u(A) is
the unique eigenvalue of A.

Proof: If A is balanced then, by Theorem 4.1(1), it has a real eigenvector. As we have
just seen, the associated eigenvalue must be p(A). Furthermore, by Theorem 4.1(3), every
eigenvector of A is real. Hence p(A) is the unique eigenvalue of A.

QED

What does this imply for irreducible matrices? Irreducibility has the same meaning in max-plus
algebra as in classical linear algebra: a matrix A is irreducible if there is no permutation of its
rows and columns which puts it into upper-triangular block form, [BCOQ92, Definition 2.13].
It is not difficult to see that this is equivalent to G(A) being strongly connected, [BCOQ92,
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Theorem 2.14]. In other words, there is a unique MSCS which is non-trivial. Hence, by
Theorem 4.1(2), irreducibility implies balance. The converse is false: the matrix below

(2 7x)

where a,c € R, is balanced but not irreducible. Proposition 4.2 tells us that Theorem 3.23 of
[BCOQI2], the analogue in max-plus algebra of the Perron-Frobenius theorem on the spectrum
of an irreducible matrix, holds verbatim if the word “irreducible” is replaced by the word
“balanced”.

The disadvantage of irreducibility is that it is so firmly tied to linear algebra and graph theory
that it is difficult to generalize it to systems with mixed constraints. The virtue of the balance
condition is that it can be defined for any min-max function and, as we have seen in this
section, we can give useful characterizations of it in cases of interest.

5 The cycle time formula

In this section we study the cycle time, Xp(Z), of a min-max function F. We recall that this
is only defined when F' is eventually periodic at Z. We begin with the case of a max-only
function, F. Let A be the corresponding matrix in max-plus algebra and suppose that F' has a
fixed point where Xp(Z) = Z+ &(h). It follows from Lemma 4.5 that Xp(Z) = h = u(A). Hence
the cycle time of any eventually fixed point is unique. What can we say about the cycle time
at an eventually periodic point? The following result is presumably well-known to max-plus
experts.

Lemma 5.1 Let A be a square matriz in maz-plus algebra. For any k > 1, u(AF) = ku(A).

Proof: G(A) has a circuit if, and only if, G(A¥) has a circuit so we can assume that both G(A)
and G(AF) have circuits.

Let g be a circuit of maximum cycle mean in G(A) and let n = |g|¢. If we take any k consecutive
edges on this circuit, say from vertex ¢ to vertex j, then the sum of the annotations on these
edges must be at most A;?i # —o0. Hence, if we start from vertex ¢ and run along k consecutive
edges on the circuit to vertex j and keep on going, n times, we generate a circuit h of G(A*)
with |h|; = n. By construction, |h|w > nku(A). Hence, w(h) > ku(A) and so p(A*) > ku(A).

Now let g be a circuit of maximum cycle mean in G(A*) and let n = |g|,. We can decompose
each edge on the circuit into a path of length k£ in G(A) such that the sum of the annotations
on the path (in G(A)) is equal to the annotation on the edge (in G(AF)). By abutting the
paths end-to-end for each edge of g, we generate a circuit h in G(A) with |h|; = kn. Then,
|h|w = nu(A*). Hence w(h) = u(A*)/k and so ku(A) > u(AF).

QED

If F' is a max-only function and A is the corresponding matrix in max-plus algebra then it is
easy to see that the matrix corresponding to F* is just A*.
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Proposition 5.1 Let F' be a maz-only function. If ¥ is an eventually periodic point of F' then
Xp(Z) = n(A),

where A is the matriz corresponding to F' in maz-plus algebra. In particular, the cycle time is
independent of which eventually periodic point is chosen and depends only on F'.

Proof: We have already seen that if Z is a fixed point of F' then Xp (&) = u(A).

—

Now suppose that 7 is a periodic point of F of period k and that F*(&) = £+ &(h). Then & is
a fixed point of F* and X« (%) = h = kXp(&). But then,

Xpe(F) = wp(AF) by the first part
= ku(A) by Lemma 5.1.

Hence, Xp(Z) = u(A). The last assertion is clear.
QED

There is an important distinction between Xz (¥) and p(A). The latter is always defined.
The former only has meaning when we know that F' is eventually periodic at Z. It is easy
to calculate p(A) in principle but this is not enough to tell us whether F' has an eventually
periodic point. As we saw in Theorem 3.3, this need not be the case.

We now want to extend this result to min-max functions. It will be convenient to first introduce
some dual notation.

e If B is a square matrix in min-plus algebra then n(B) = A{w(g) | g any circuit} denotes
the minimum cycle mean of B.

For the remainder of this section we shall use the letter A for max-plus matrices and the
letter B for min-plus matrices. Also, if ¥, € (RU {—00})", then ¥ > & if v; > w; for each
1< <n.

Now let F' be a min-max function of dimension n. As we saw in (5), F' can be placed in
conjunctive form so that, for 1 < k < n,

Fp(@) = (Afy + 31 V- VAL @) A A(Afgy + 1 V-V ARy, +30),  (16)
where Afj € RU{—o0}. Here /(k) is the number of max-only expressions in the component
Fi. We can now associate a max-plus matrix A to F' by choosing, for the k-th row of the
matrix, one of the £(k) max-only expressions in (16): Ag; = A} ; where 1 <y < ((k) specifies
which max-only expression is chosen in row k

Definition 5.1 The matriz A constructed in this way is called a maz-only projection of F'. A
set of max-only projections is the collection of all such matrices from a single conjunctive form
for F such as (16). If the conjunctive form is also normal, then the corresponding matrices
are called normal maz-only projections. projections.

It follows from the discussion surrounding Theorem 2.1 that if A is any max-only projection
of F then there exists some normal max-only projection A’ such that A}, < A;, for each row
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7. By virtue of Theorem 2.1 the sets of normal max-only and normal min-only projections of
F' are uniquely defined. In practice it is often more convenient to work with whatever set of
projections is easiest to construct instead of doing the additional work necessary to find the
set of normal projections. It is, however, of theoretical interest to know that there is a way
to associate a unique canonical set of projections to any min-max function. Note that sets of
projections can be quite large: the function (16) has a set of [];;«, £(7) distinct max-only
projections. Let us consider the following example and work out sets of max-only and min-only
projections:

Fl(:vl,xz) = (a+:v1\/b+:1:2)/\c+x1
Fy(x1,22) = (t4+ a1 Au+ x2)

where a,b,c,t,u € R. Fj is already in conjunctive form while F5 is in disjunctive form. We
first put F5 into conjunctive form using the algorithm discussed in §2:

Fy(x1,29) = (t+ 21V —00+x2) A(—00 + 21 V u+ x2)

and then read off a set of max-only projections:

O Y (O P (o B el B

If @ < ¢ then F} is in conjunctive normal form and the set of projections above is also a set
of normal max-only projections. If a > ¢ then a set of normal projections consists of only the
first two matrices. Dually, we can put Fj into disjunctive form—an exercise which we have
already performed in (8):

Fi(z1,22) = ((aANe)+x1 Adoo+x22) V (c+ 21 Ab+ x2)

and then read off a set of min-only projections:

aNc +oo c b
{< t u)’(tu>}

We hope this example has clarified these important constructs.

The proof of the following lemma is very similar to that of Lemma 4.4 and can safely be left
to the reader. See also Lemma 1.3.9 of [Gau92, Chapter IV].

Lemma 5.2 Let A be an n X n matrix in maz-plus algebra and suppose that AV > AU for some
7€ (RU{—00})" such that 7 # &(—o0). Then u(A) > .

We can now state the main result of this section.

Theorem 5.1 Let F be a min-maz function of dimension n. If Z is a fized point of F' then

V 1(B) =Xr(@) = )\ n(A) (17)

BeQ AeP

where P and Q are any sets of maz-only and min-only projections, respectively, of F.
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Proof: Suppose that F(Z) = £+c(h) so that Xp(Z) = h. Let F be expressed in the conjunctive
form from which P arises and let us use the same notation as in (16) above. For each component
Fy, let i, be the index of some max-only expression for which Fi(¥) = Afk*:z':'T. Such an
expression must clearly exist for each 1 < k < n. It then follows that, for any 1 <1i < {(k),
Akt > Ak & (18)

Tk

Let A; € P be the max-only projection constructed by choosing the max-only expression iy
in row k. Two conclusions can now be drawn. Firstly, since F(Z) = Z + &(h), it follows
that 4177 = h&@”. Hence ¥ is a real eigenvector of A; and it follows from Lemma 4.5 that
h = u(A1). Secondly, it follows from (18) that if Ay € P is any max-only projection from the
same set, then 4,77 > ha!. But then Lemma 5.2 tells us that u(As) > h. Hence,

h= A u(A).

AeP
The other assertion is clearly the dual statement.

QED

Corollary 5.1 Let F be a min-max function. The cycle time of F at an eventually periodic
point is independent of which eventually periodic point is chosen and depends only on F'.

Proof: Suppose that # and § are periodic points of F' such that F*(#) = & + &) and
FY() = § + &(s). Then, by (9), & and 7 are both fixed points of F* with F*¥ (%) = & + &(ir)
and FFY(j) = 7 + &(ks). Tt follows that Ir = Xpr (&) and ks = Xpu (7). But by Theorem 5.1
applied to F* we see that Ir = ks. Hence Xz(%) = r/k = 5/l = Xp(i).

QED

With this result in place, we can dispense with the dependence of the cycle time on the chosen
point in R".

Definition 5.2 Let F' be any min-maz function. If F' is eventually periodic somewhere, then
the cycle time of F, X(F), is its cycle time at any eventually periodic point. X(F) is undefined
if F'is not eventually periodic somewhere.

Theorem 5.1 should be thought of as the generalization to min-max functions of the Perron-
Frobenius theorem for max-plus matrices discussed in §4, [BCOQ92, Theorem 3.23]. The
hypothesis of irreducibility, or balance, is replaced by the weaker hypothesis that F' has a fixed
point. Note that we do not have to use normal projections to calculate the cycle time.

The conclusion of Theorem 5.1 is relatively weaker than that of Proposition 5.1. For instance,
if a min-max function has a periodic point of period £ > 1 but is not known to have a fixed
point, then Theorem 5.1 cannot be used to calculate X(F') in terms of some set of projections
of F. We could, of course, use the projections of F¥ but this is usually very inconvenient.
However, if F' is max-only then Proposition 5.1 gives us a formula for X(F') no matter what the
period. The missing ingredient in Theorem 5.1 is some analogue of Lemma 5.1, which seems
difficult to find. Alternatively, we could hope that later research will confirm the connection
between periodicity and fixed points which is suggested by Theorem 3.3. In that case we would
know that Theorem 5.1 always gives the right answer.
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By way of illustration of the results in this paper we reconsider some of the work of [O1s91]
and [Ols93]. Suppose first that F' is a min-max function of dimension n + m such that F; is
max-only for 1 < ¢ < n. (If F' has max-only components which are distributed differently, we
can always renumber the variables to bring it into this form.) We do not care, for the moment,
about the syntactic structure of F; when n +1 < i < n+ m. Express F in conjunctive form
and let us use the same notation as in (16). Let A be the n x n matrix such that A;; = Aﬁj
for 1 <14, < n. Note that A is not necessarily the matrix of a min-max function because, for
instance, A;. could be é(—o0) for some row i.

Lemma 5.3 With the assumptions above, if F' has a fized point then X(F') > p(A).

Proof: Let P be the set of max-only projections corresponding to the chosen conjunctive
form. Suppose that Ay € P. It is easy to see that A must appear as the top, left-hand n x n
sub-matrix of Ay. In particular, any circuit of G(A) can be considered a circuit of G(Ay) with
the same cycle mean. Hence u(As) > p(A). This holds for any A € P. Now suppose that F
has a fixed point. It follows from (17) that X(F') > p(A).

QED

Now suppose that, in addition to the assumptions above, F; is min-only for n +1 < ¢ <
n + m. We may call such a function separated, since different constraints never appear in the
same expression. Place F' in disjunctive form and let @) be the corresponding set of min-only
projections. We can, in similar fashion, identify an m x m matrix, B, in min-plus algebra,
which corresponds to the bottom, right-hand m x m sub-matrix of any min-only projection in
Q. It follows from Lemma 5.3 and its dual that if F' has a fixed point then

p(A) < X(F) < n(B). (19)

This is identical to the necessary condition of [Ols91, Theorem 2.1] but does not require such
strong assumptions: the proof in [Ols91] relies on the irreducibility of A and B. The fact that,
in the presence of these same assumptions, (19) is also sufficient for the existence of a fixed
point—this is the main result of [Ols91]—is beyond the scope of this paper.

In [Ols93] more detailed information is presented about separated functions in dimension 2.
The only case of interest is example (13) which we looked at in §3. Theorem 16 of [O1s93]
states that, under the assumptions made in §3, if a < (b+¢)/2 < d then for any # € R?, there
exists K > 0 such that, for all £ > K,

F*42 (g, m0) = F¥(21,20) + E(b + ¢).

(The constant is stated to be (b + ¢)/2 in [Ols93] but this is a misprint.) In our language,
F' is eventually periodic everywhere with period at most 2 and cycle time (b + ¢)/2. Now we
have already seen that Proposition 3.1 implies that this function has a fixed point if, and only
if, a < d. Furthermore, by Theorem 3.3, F' is eventually periodic everywhere, with period at
most 2, if, and only if, the same conditions hold. Note that the values of b and ¢ play no role
so far. Finally, it is easy to see that



is a set of max-only projections of (13). It follows from Theorem 5.1 and (17) that, when
a<d,
X(F)=(aV(b+c)/2)AN(aVvd)=(aV (b+¢c)/2) Nd.

In particular, if a < (b+ ¢)/2 < d, then X(F) = (b+ ¢)/2 which demonstrates Theorem 16 of
[O1s93].

6 Conclusion

The theory of min-max functions is in its infancy and has some way to go before reaching
the level of maturity of max-plus algebra. What we have tried to do in this paper is to
set up the basic definitions, give a thorough treatment of the 2-dimensional case, establish
the connections with max-plus algebra and find a simple generalization of the fundamental
formula of the maximum cycle mean. There are many open problems. Perhaps the most
interesting and difficult of these is to extend the results on eventual periodicity in dimension
2 to higher dimensions. We believe that the picture we have sketched in §3 will be useful to
anyone contemplating an attack on that problem. Even if the details of the high-dimensional
case turn out to be more subtle—painful experience has taught us the wisdom of not making
conjectures—it will give the prospective attacker something to aim at. The work in §4 suggests
that some of the well-known concepts and results of max-plus algebra should be reconsidered
in the light of new results on min-max functions. Finally, we believe that the projections which
we introduced in §5 will prove to be a key tool in analysing the deeper properties of min-max
functions. Indeed, recent work has already demonstrated their significance, [Gun94a, Gun94b].
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A Normal form

Proof (of Theorem 2.1): Suppose that f and g are min-max expressions of n variables
which are both in conjunctive normal form:

=N ANfl, g=g N Agm, (20)

where f; and g; are max-only expressions in conjunctive normal form, as in (4), and f; £ f;
and g; £ g; for ¢ # j. Suppose that f = g. We are required to prove that, up to re-ordering of
the conjunctions in g or f, f = g.

We shall consider first the situation in which / = 1. We then have

f=g1 N Agm, (21)

where f = a1 +x1V---Va, +x, We claim that, in this case, f = g; for some 1 < ¢ < m. The
proof of this is by induction on n, the number of variables. If n = 1 then (21) becomes

a1 +x1=b14+x1 A Aby + 11

where m < n and the claim follows easily. Now assume that the claim is true for n < k,
where £ > 1 and consider (21) when n = k. There exists some a; # —o0, since any min-max
expression has at least one variable. Assume, without loss of generality, that this is ap. We
can then write (21) as

h\/ak—l-:ckz(h1Vbl—l—:z:k)/\---/\(hm\/bm—l—xk), (22)

where b; € RU {—o00} and h, h; are max-only expressions of dimension k — 1.

Choose arbitrary values for the variables other than zx. By letting x; become sufficiently
small, (22) becomes
h=hi AN Ahp,.
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This holds for any values of the variables z1,::-,xr_1. Hence we may apply the inductive
hypothesis. We deduce that h equals one of the h; and h < h; for all 1 < ¢ < m. It follows
that, we can, by suitably re-ordering, rewrite (22) as

hvag+xr=(hVbi+xp) AN ARVb +xi) A (hrs1 Vbrgp1 +xp) A A(hn V b + 1), (23)

where h < h; for r+1 < i < m. (The notation f < g for min-max functions, means that f <g¢
but f # ¢g. That is to say, there exists some point & such that f(Z) < g(Z). However, it does
not rule out the possibility that there are other points, ¥, where f(7) = g(%).) By letting xy
become sufficiently large in (23) we see that b; € R for all 1 <7 < m and (23) becomes

ar+xp =b1 +xp AN ANbpy + Tk

Hence, a; equals one of the b; and a < b; for all 1 < ¢ < m. If ap = b; for some 1 < ¢ < r,
then we are done. So suppose that a; < b; for each 1 <7 < r. We shall derive a contradiction.

We can, by re-ordering once again, rewrite (23) in the form
hVag+x, = (h\/b1+:1:k)/\---/\(h\/br—l-xk)/\---/\(hSVak—}—xk)/\---/\(hmVak+xk), (24)

where 1 <r<s<m,a; <b;forl<i<sandh<h;forr<i<m.

As before, choose arbitrary values for the variables other than x. Choose x; so that h =
ax + x, which we may always do. Under these conditions, we may simplify (24) so that

h=bi+zxk A Abp+xp Ahs Av-- A, (25)

where the terms h; V b; + x for r < ¢ < s do not contribute because b; > ar. We can now
substitute xx = h — aj and rewrite (25) as

h=(by A Ab) —ap+hAhs A Ahm.

Because this holds for any values of the variables z1,---,xr_1, we may apply the inductive
hypothesis once again. Since h < h; for s < ¢ < m and a < b; for 1 < i < r, it must be
the case that by A --- A b. = ag. But then ap = b; for some 1 < ¢ < r, which contradicts the
constraints of (24). Hence f = g; for some 1 < ¢ < m and the claim follows by induction.

We can now return to the general case, (20). Since f = g by hypothesis, we deduce that

(iVg)A---AN(iVg)=fVag=9gVag =g

Since f; V g1 is max-only, we may apply the first part above to deduce that g, = f, V g1 for
some 1 < p < [. Hence, f, < g1. But we can apply the same technique to f, to deduce that
9q < fp for some 1 < ¢ < m. Hence, g, < g1 and so, by the requirements of normal form,
¢ =1 and f, = g1. Proceeding in this way, we can show that [ = m and each g; is equal to
one, and only one, f;. We have already seen, by Lemma 2.1, that conjunctive normal form for
max-only expressions is unique. Hence it follows that, by suitably re-ordering the g; or the f;,

f=g.
QED
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